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STJMMARY 

The buckling strengths of eleven axially compressed filament- 
wound cylinders with diameter to thickness ratios ranging from 
167 to 643 are determined experimentally and analytically. The 
analytical predictions of buckling loads are made by using linear 
anisotropic shell theory. The results of the compression tests 
generally indicate that the cylinders buckled at 65 to 85% of the 
loads predicted by linear analysis. The composite moduli for 
each of the cylinders are determined experimentally and are in 
reasonable agreement with the theory of S. Tsai. 
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I. INTRODUCTION 

Experimental data on buckling of filament-wound cylinders 

under axial compression have been obtained by Young, 
1 Card and 

Peterson, 2 and Sargent ( see Ravenhall 3>. The cylinders tested 
had diameter to thickness ratios ranging from 25 to 304. In 
general, a reasonable comparison was achieved between the buck- 
ling loads predicted by small deflection orthotropic shell 
theory and the test data. In addition, Card and Peterson noted 
the coupling between shear failure and buckling when resin 
stresses are high enough at the buckling load to cause plastic 
flow in the resin. 

This report describes an experimental and analytical study 
of the buckling strength of eleven filament-wound cylinders under 
axial compression. The cylinders fabricated for this study have 
diameter to thickness ratios of 167 to 643 and consist of three 
composite layers. Fabrication procedures for the cylinders are 
given in Appendix A. One layer is a polar wrap consisting of two 
half-layers at angles of +cp and -cp with respect to the longitudinal 
axis of the cylinder (0 <_ ($ < 9 deg). The polar wrap is enclosed 
by an inner and an outer circumferential wrap. The three layers 
have the same nominal thickness. This combination is chosen be- 
cause it is efficient for internal pressure and minimizes the ef- 
fects of initial imperfections on buckling strength by providing 

circumferential in-plane and bending stiffening. 4, 5, and 6 All 
of the cylinders studied have in-plane and bending stiffness 
matrices of orthotropic form. Also, the cylinders whose middle 
layers are not oriented axially produce an anisotropic coupling 
between stretching and shear of the form described by Reissner 

and Stavsky. 7 

Analytical predictions for buckling loads were obtained by 
using linear anisotropic shell theory. The results of the compres- 
sion tests indicate that the cylinders buckled at 65 to 85% of 
the loads predicted by classical linear analysis. The buckling 
mode was coupled with catastrophic shear failure in the smaller 
cylinders. The larger cylinders buckled into the classical 
diamond-shaped pattern with the basic integrity of the cylinder 
maintained. 



The composite moduli required for the buckling analysis are 
determined for each cylinder from experimental test data. The 
data are obtained by the classical method of using three tests: 
torsion, internal pressure, and axial tension or compression. It 
is demonstrated analytically that the anisotropic coupling be- 
tween stretching and shear only influences the determination of 
the moduli by terms of the order of the square of the ratio of 
the thickness of the cylinder to the radius of the cylinder. 
Thus, because of the thinness of the cylinders, the anisotropic 
coupling has a negligible effect on the experimental determina- 
tion of moduli. Also, the moduli obtained from the experimental 

data are compared with those predicted by the theory of S. Tsai. 
8 

In general, agreement is good when a value of 0.3 is assigned to 
his continguity factor. 

2 



II. ANALYTICAL PROCEDURE 

The buckling loads for clamped filament-wound cylinders under 
uniform axial compression are analytically determined by using 
linear anisotropic shell theory. The general procedure for ob- 
taining buckling solutions for anisotropic cylinders with speci- 

fied boundary conditions has been given by Cheng and Ho. 9 For 
the sake of completeness, the derivation of the solution is given 
in Appendix B and is briefly outlined here. 

The displacement equations of equilibrium that are used are 

obtained by combining Fliigge's 10 stress equations of equilibrium 
and strain-displacement expressions with an anisotropic stress- 
strain relationship. The eighth order system of displacement 
equations governing the stability of the cylinder are solved by 
first assuming a wave form for the displacement field in terms 

of the axial and angular coordinates. 9 and 11 The requirement 
that the equations of equilibrium be satisfied yields a character- 
istic equation governing the eight axial wave numbers that are 
permitted for a given load. Since each axial wave number satisfies 
the characteristic equation, the displacement modes corresponding 
to each wave number can be superimposed. The modal amplitudes are 
governed by the requirement that the prescribed end conditions be 
satisfied. The lowest axial load that simultaneously satisfies 
the differential equations of equilibrium and the end conditions 
is the critical buckling load. 

The numerical solution for the buckling load is obtained in 
the following manner. First, a lower bound for the load is ob- 
tained from the characteristic equation by accepting whatever 
boundary conditions occur with an integral number of half-waves 
specified in the axial direction.;k For a clamped cylinder 
(w = v = u = aw/ax = 0 at x = *L/2), the buckling load is raised. 

With a given number of circumferential waves and with specified 
geometric and material properties of the clamped cylinder, the 

;kFor the particular case of an orthotropic cylinder, the end 
conditions for the lower bound solution are the usual mixed or 
"simple" supports on a right-circular section, that is, w = v = 
N = 0 at x = *L/2. 

xx = Mxx 
With a general anisotropic medium, 

the end conditions corresponding to the lower bound solution 
depend on the degree of anisotropy. 



buckling load is found by an interval halving procedure. The 
lower bound solution is used for the first estimate. The initial 
increment is also obtained from the solutions of the character- 
istic equation by choosing an increment that is less in magnitude 
than the difference between the buckling load for the fundamental 
mode and the next higher mode. With each trial buckling load, an 
eighth order polynomial equation, obtained by expanding the 
characteristic determinant, is solved for the eight axial wave 

numbers by using Muller's method. 1z After the wave numbers are 
computed, the boundary determinant obtained by requiring clamped 
conditions is evaluated by Crout reduction. The iteration is 
continued until the sign of the boundary determinant changes. The 
interval is then halved, and the process is repeated until suffi- 
cient accuracy is achieved. Buckling loads corresponding to 
different numbers of circumferential waves can be found, if nec- 
essary, to determine the minimum buckling load. 

The stiffnesses required for the buckling analysis are ob- 
tained from three simple experiments. The tests used are internal 
pressure, axial tension or axial compression, and torsion, with 
principal strains measured throughout. The load-strain slopes 
from the three tests provide a direct determination of the in- 
plane stiffness matrix, By definition, the in-plane stiffness 
matrix is the integral of the composite moduli over the thickness 
of the shell. The integration yields four simultaneous, symmetric, 
algebraic, nonhomogeneous equations relating the principal compos- 
ite orthotropic moduli for filament-wound construction to the in- 
plane stiffnesses. The equations are simply inverted by Crout 
reduction. The moduli thus determined are used to compute the 
bending stiffness and the coupling stiffness matrices used in the 
buckling analysis. The derivation of the equations required to 
compute the stiffnesses and moduli from the test data is given 
in Appendix C. 



III. EXPERIMENTAL PROCEDURE 

The general procedure used for determining stiffnesses and 
the buckling strength of each cylinder was as follows. End 
plates were shrink fitted to the cylinder and external ring 
clamping was applied. The ten to twelve strain gages on the 
cylinder were used to first record strains up to 500 microinches/in. 
in each of the three tests used to determine initial stiffnesses, 
and then were used to record strains during the buckling test. 
The locations and orientations of the strain gages are given in 
Fig. 1. The internal pressure test was conducted first. This 
test provided a good check on strain gage performance as well as 
serving its intended purpose for determining stiffness. Torsion 
arms were then fitted to the end plates, and a pure torque was 
applied to the cylinder in a torsion frame. The torque arms were 
then removed and the cylinder was placed in a universal testing 
machine for the axial tension test. Afterward, because of the 
possibility of slippage during the tension test, the end clamping 
rings were loosened to permit reseating the end plates against 
the ends of the cylinder. The end plates were then reclamped 
and the cylinder tested in axial compression until buckling 
occurred. 

After the buckling test, four photomicrographs were taken of 
the cross section of the cylinder at widely spaced locations. The 
photomicrographs provided layer thicknesses and an estimate of 
winding quality. If buckling occurred in a confined region, the 
photomicrographs were taken only in that region. The geometric 
parameters of each cylinder are listed in Table 1. 

Before each test, all strain gage channels were zeroed with 
a switching and balancing unit. After each increment of load, 
the gages were run through quickly to prevent gage heating and 
subsequent zero drift. This technique was followed because the 
filament-wound composite has a low coefficient of thermal con- 
ductivity. The technique was found to be generally successful 
in preventing zero drift. Raw data were plotted in the form of 
pressure, torque, or force versus strain for each strain gage 
read. The slopes were then picked from the graphs. 

5 



IV . RESULTS 

A. EXPERIMENTAL RESULTS 

A summary of the averaged load-strain slopes used to determine 
stiffnesses and moduli for each cylinder is given in Table 2. An 
indication of the individual results for each strain gage, 
throughout the complete sequence of testing, is given for Cylinder 
9 (D = 24 in.) in Fig. 2 thru 5. The nature of the buckling 
failures in the 6, 12, 18, and 24-in. dia;? cylinders is indicated 
in Fig. 6 thru 12. 

The behavior of the specimens with internal pressure loading 
was as expected. All strain gages indicated extensional deforma- 
tion with the largest output from the circumferential gages. A 
netting analysis would predict equal strains for the longitudinal 
and circumferential directions. The isotropic influence of the 
resin, however, produced a composite result between a balanced 
design (equal strain) and an isotropic material (1:2 ratio for 
strain). The strain gages generally indicated a linear behavior 
with negligible hysteresis. Hysteresis was quite noticeable, 
however, in Cylinders 8 and 9 (Fig. 2). This may have been due 
to not letting the pressure gage stabilize sufficiently during 
unloading for the tanks with large volume, or it may have been 
due to strain gage drift. 

In general, the data from the tension stiffness tests indicate 
a remarkably linear behavior with little hysteresis. In this 
respect, the tension data of Cages 4 and 5 of Cylinder 9 (Fig. 3) 
are not typical of the gages on the other cylinders. The results 
of the torsion tests also indicate little hysteresis or non- 
linearity. The results of the torsion test on Cylinder 9 are 
shown in Fig. 4, with the principal compression and tension 
strains plotted in the same direction to facilitate a comparison 
of the slopes. It should be noted that some of the cylinders 
were loaded to full test pressure, tension and/or torsion before 
the actual stiffness test was conducted. Some cylinders were not 
preloaded. However, preloading appeared to have no effect on the 
quality of the results, in either linearity or hysteresis. 

+:Diameter. 



With the larger diameter cylinders, there was some difficulty 
in applying the tension loads required to achieve 500 microinches/ 
in. in the axial strain gages because of slippage of the end 
plates. The clamping force was then considerably increased by 
additional tightening of the clamping screws so that no slippage 
occurred. Unfortunately, keeping the same degree of clamping 
during the compression test appeared to affect the buckling load 
and the character of the buckles. This is explained in more 
detail later. 

The axial compression loads that buckled the cylinders are 
listed in Table 2. For all the cylinders except 6, 7, and 8, 
the values are as expected. The failures were sudden and without 
warning; loads dropped off precipitously. All four 6-in. diameter 
cylinders experienced a catastrophic shear failure coupled with 
diamond-shaped buckles. The plastic behavior of the composite 
was most noticeable in Cylinder 1, which failed at 14,020 lb 
while the load was being maintained for the recording of dial and 
strain gage readings.9; The 6-in. dia cylinders with nominal L/D 
= 5 had buckles only near an end clamping plate (Fig. 6). Figure 
7 shows a view of the inside of the same cylinder after the end 
plates were removed. The 6-in. dia cylinders with nominal L/D = 1 
had buckles that covered one-third to one-half the length of the 
cylinders. Figure 8 is a view of Cylinder 1, unloaded, with the 
buckle diamonds outlined with a china-marking pencil. 

In the larger cylinders, the diamond-shaped buckles occurred 
with little visual evidence of permanent damage. Figure 9 is a 
view of Cylinder 4, just after buckling, showing general absence 
of wall rupture.+ In no case did the diamond buckles occur com- 
pletely around the cylinder. Generally, they only encompassed 
about three-quarters of the circumference. This is due, of 
course, to slight variations in the wall construction that trigger 
the buckle and to the use of a swivel loading head. Once buckling 
starts, the loading head twists and tends to relieve the unbuckled 
portions. Within groups of cylinders of the same size, buckling 

;kStrain gage readings were taken after every lOOO-lb increment 
of compression load because of the usefulness of the gages in de- 
termining compression moduli. After the experience with Cylinder 
1, however, this practice was followed only up to 9000 to 13,000 
lb, and then the test was run continuously to failure with only 
one gage monitored. 

tThe shear effects were absent because the stresses at 
buckling were halved by doubling the diameter. 



always occurred at the same end (except for Cylinder 7, which was 
influenced by the end clamping). At first this was thought to 
be a function of the orientation of the specimens in the testing 
machine, since the failures occurred at the end loaded by the 
swivel head. But changes in orientation resulted in continued 
failure at the same end with respect to the original location on 
the winding mandrel. Thus, it was concluded that the location 
of failure was a function of the winding technique and orienta- 
tion. 

The 18-in. dia cylinders exhibited a substantially lower 
buckling strength and a mode shape that occurred in a narrow 
region around one clamping plate (Fig. 10). Buckling was not 
sudden and occurred almost inaudibly. The second 18-in. dia 
cylinder was instrumented with two strain gages near a clamped 
end; the gages turned out to be in a region that did not expe- 
rience the local end buckling. The two gages not only indicated 
a considerably different slope than the other axial gages, they 
also recorded a permanent strain. The loading of the 18-in. dia 
cylinders was discontinued after the first local buckles occurred. 
The damaged ends were cut off and the rest of the two cylinders 
were saved for further testing (the testing of the shortened 
cylinders is described later). 

The first 24-in. dia cylinder (Cylinder 8) experienced the 
same local end buckling result. The load was then continuously 
increased, however, to find out what would happen. The initial 
end buckles grew continuously larger until an audible snap 
occurred and the load dropped. Table 2 shows the two values of 
buckling load for Cylinder 8 when buckling was first noticed, 
and when the configuration sudden.ly changed and the load dropped 
off. In Fig. 11 the growth of the buckle diamonds is shown by 
the letters in china-marking pencil. The first buckle occurred 
at "A." The state corresponding to the higher load in Table 2 
is labeled "E." Upon unloading, the buckles disappeared gradu- 
ally, rather than snapping out. 

The local end buckling phenomenon was first suspected to be 
caused by a lower stiffness near the ends (photomicrographs taken 
afterward in the buckled region, however, gave no support to this 
suspicion). Then, an inspection of the photographs of the end 
buckles showed they occurred directly above the clamping screws 
(Fig. 10). The consistency of this one-to-one correspondence in- 
dicated that the extreme degree of clamping warped the cylinder 
out of its initial shape and created an initially imperfect geome- 
try that seriously influenced the specimen's buckling resistance. 
The split clamping rings for the large diameter cylinders were 
apparently too flexible to distribute the clamping pressure uni- 
formly. 



The clamping procedure was corrected before the second 24-in. 
dia cylinder (No. 9) was tested. The number of clamping screws 
was doubled to 24 and the screws were not made as tight. The 
cylinder reached its proper buckling load. No local end buckles 
occurred. The failure was sudden and the cylinder buckled into 
the classical diamond pattern (Fig. 12). The buckles also dis- 
appeared suddenly during unloading. Some of the extreme corners 
of the diamond buckles exhibited layer separation. A photomicro- 
graph taken of the cylinder cross section is shown in Fig. 13. 
In addition to providing layer thickness data and a qualitative 
description of the caliber of construction, the photomicrograph 
also indicated a crack that was not visually observed after the 
test. Figure 14 provides a detailed magnification of the crack. 

The last series of tests were on the two 18-in. dia cylinders 
whose damaged ends were cut off. The new nominal L/D ratio was 
0.76. The cylinder with ($ = 0 was somewhat damaged during the 
cutting process. Despite this, the cylinders were subjected to 
the complete sequence of testing, and the three stiffness tests 
indicated little change in stiffness. The clamping procedure 
applied to the shortened 18-in. dia cylinders was similar to that 
on Cylinder 9. The number of clamping screws was doubled to 24 
and the screws were not made as tight. The buckling strengths 
of the two 18-in. dia cylinders were found to be 51 and 89% 
greater than the strengths of the same cylinders using the previous 
clamping procedure.+; No end buckles occurred during the axial 
compression tests. The failures were sudden and the cylinders 
buckled into the classical diamond pattern (Fig. 15). 

B. ANALYTICAL RESULTS 

The analysis of the data obtained in this study is summarized 
in Tables 3 thru 6. 

;kWith a cylinder whose length is of the order of magnitude of 
the diameter, small changes in length have negligible influence 
on buckling load. 

9 



The moduli obtained from the experimental data are given in 
Table 3. First, the in-plane shear stiffness A 

66 
was obtained 

from an average of the principal tensile and principal compressive 
small strain data in the torsion test. Next, the in-plane stiff- 
nesses A22, All, and Al2 were calculated by combining the small 

tensile strain data from the internal pressure test with the small 
strain data from the axial tension test, the small strain data 
from the axial compression test, and the higher strain data from 
the axial compression test. Finally, moduli were calculated from 
Eq [C-13] and [C-14] in Appendix C. The table theoretically in- 
dicates a dependence of the shear modulus on the axial tension or 
compression tests only because of the slight coupling when cp # 0 
(the anisotropic cylinders). 

The equations used for determining moduli from stiffnesses 
for cp = 0 (the orthotropic cylinders) offer direct insight into 
which moduli can be computed accurately. For cp = 0 the equations 
are: 

c22 ' = (2hcA22 (2hcj2 - (hpJ21 

CllC = (2hcA11 - hpA22>/ I (2hcj2 - (hpj21 

cl2 
C 

= Adh 

C66c = A33 
I 

h 

where h 
C 

is the thickness of a circumferential wrap layer, h is 
P 

the thickness of the axial wrap layer, and h is the total thick- 
ness of the cylinder wall. 

The moduli C22c, C12', and C66c are obviously insensitive 

to slight errors in the stiffnesses. However, the modulus 

perpendicular to the fibers, Cllc, is small and is determined by 

the difference between two large numbers. This is the reason for 
the greatest fluctuation in data in Table 3, appearing in the 
Young's modulus perpendicular to the fibers. The data for shear 

10 



modulus show the greatest consistency of all the moduli, because 
they are obtained from a direct calculation. Young's modulus in 
the direction of the fibers is not quite as consistently obtained, 
but the fluctuations are tolerable. The data for Poisson's ratios 
can only be understood by recalling the definitions: 

Major Poisson's ratio = C12c/C11c, 

Minor Poisson's ratio = C12' C22c. 
/ 

The great fluctuations indicated in the major Poisson's ratio 
results are caused by the fluctuations in the modulus perpendicular 

to the fibers. The data for C12' are remarkably consistent (the 

degree of consistency of C12' is indicated by the consistency of 

the minor Poisson's ratio column). Since C12' is the quantity of 

interest in a shell analysis, the effect of the fluctuations in 
the major Poisson's ratio data is more illusory than real. 

A survey of the results in Table 3 indicates no consistent 
ratio of the moduli obtained by using the initial axial tension 
data and the moduli obtained by using the initial axial compres- 
sion data. However, the differences obtained by using the two 
sets of initial axial test data are small. Of course, greater 
differences in moduli are obtained by using the higher strain 
data of the axial compression test. 

Analytical predictions of the cylinder buckling loads and a 
comparison with the experimentally determined loads are presented 
in Table 4. The analytical predictions are based on stiffnesses 
obtained by using the high strain axial compression data combined 
with the data from the internal pressure and torsion tests. In 
general, the buckling predictions from the characteristic equation 
(corresponding to a simple support solution when cp = 0) are negli- 
gibly different from the predictions of shell analysis with clamped 
ends specified. The magnitudes of the wave numbers encountered 
make this physically obvious. 

When classical snap buckling occurred the experimental loads 
were 65 to 85% of the linear theory predictions. When local end 
buckles occurred, due to nonuniform clamping that warped the ini- 
tial end shape of the cylinders, the experimental loads were 

11 



40 to 43% of the classical linear theory predictions. The tabu- 
lations given in Table 4 for Cylinders 6 and 7 correspond to the 
original 18-in. dia cylinders that experienced local end buckles. 
The results given for Cylinders 6a and 7a correspond to the same 
18-in. dia cylinders with their damaged ends cut off. Cylinders 
6a and 7a were tested with the improved clamping procedure. The 
two ratios tabulated for Cylinder 8 correspond to the first 
occurrence of the end buckles and to the final snap after more 
load was applied. The two 6-in. dia cylinders with L/D = 5 
behaved in a manner similar to the 6-in. dia cylinders with L/D 
^I 1. For the two long cylinders, the buckling load corresponding 
to n = 2, m = 1 was just slightly higher than the load correspond- 
ing to n = 8, m z 40. Cylinder 2 was a 6-in. dia cylinder that 
was initially rejected because of noticeable wetting in the com- 
posite construction. The wetting appeared to have little effect, 
however, on the buckling strength of the cylinder. Before the 
cylinders were tested, the larger diameter cylinders were expected 
to show a poorer comparison with linear theory than would the 
smaller cylinders. This was based on the increased sensitivity of 
the larger diameter cylinders to initial imperfections. The 
larger cylinders sustained remarkably high loads, however, and 
generally exhibited the same percentage of classical load as the 
smaller ones. This was due to winding the cylinders around ac- 
curately machined aluminum mandrels and, presumably, also was due 
to the circumferential stiffening. 

The last column in Table 4 indicates the ratio of the buckling 
load predicted by orthotropic theory (with coupling between 
stretching and shear ignored) to the buckling load predicted by 
anisotropic theory. The effect of coupling between stretching 
and shear is obviously negligible for the cylinders fabricated in 
this study. Indeed, the cylinders were purposely designed for 
small coupling. The B16 and B26 elements of the [B] matrix, 

created by the polar winding, actually alternate in sign at each 
of two weave lines in a plane that is skew with respect to the 
longitudinal axis by the angle Cp (Appendix C). If the coupling 
between stretching and shear were large, the nonhomogeneity of the 
[B] matrix would make the analysis of Cheng and Ho theoretically 
inapplicable. The theoretical difficulty is probably not 
important, however, for the following reasons: 

1) If B16 and B26 were homogeneous, an arbitrary change 

in their sign would not affect the buckling load of 
a cylinder with homogeneous boundary conditions speci- 
fied on right-circular ends; 

12 



2) Buckling is of a local character because of the high 
number of circumferential and axial waves in the buck- 
ling mode. 

For these two reasons, two diametrically opposite regions on the 
cylinder (that are not at the weave lines) will buckle at the same 
applied load. If an analysis were to be made that would include 
the nonhomogeneity of the [B] matrix, it would probably show a 
slight effect from a rapidly decaying boundary layer near the two 
weave lines. 

The effect of using initial tension moduli to calculate buckling 
loads, instead of the high strain axial compression data, is indi- 
cated in Table 5. Generally, the difference between the two sets 
of calculations is not large. The largest effect occurs in Cylinders 
3 and 4. The 10 to 14% effect on Cylinders 3 and 4 is predominantly 
due to the difference between the moduli perpendicular to the fibers. 
Although the modulus perpendicular to the fibers is small, it has 
an important influence on D 11' which in turn has an important in- 

fluence on the buckling strength of the cylinders4. 

There are many analytical models available for the prediction 
of elastic moduli of unidirectional fiber-reinforced composites. 
The selection of the proper model is subject to the constraint im- 
posed by the geometric arrangement of the glass fibers within the 
resin matrix. Each of the layers in the cylinders fabricated for 
this buckling study generally have fibers that are randomly distri- 
buted. In addition, many of the fibers are contiguous because of 
the low resin content. For these reasons, the analytical model of 

S. Tsai' appears to be an appropriate model to compare with the 
moduli based on the experimental data. Young's modulus in the di- 
rection of fibers is based on the usual assumption that the fibers 
and the resin carry loads proportional to their stiffnesses. The 
models for Young's modulus perpendicular to the fibers, major 
Poisson's ratio, and in-plane shear modulus are constructed by linear 
interpolation between two extreme cases: (1) all fibers are isolated 
by resin; (2) all fibers are contiguous. S. Tsai's contiguity fac- 
tor (C) indicates the degree to which the fibers touch. The case 
C = 0 indicates all fibers are isolated. The case C = 1 indicates 
all fibers are contiguous. 

13 



Table 6 provides a comparison of the experimentally determined 
initial tension moduli with the analytical model. The parameters 
used in the analytical computations are 

Ef = 12.4 x LO6 psi 

I/f = 0.22 

Yf = 2.49 

E m = 0.5 x lo6 psi 

V = 0.35 
m 

'm 
= 1.22 

k = 1.0, 

where E is Young's modulus; v is Poisson's ratio; y is specific 
gravity; subscripts f and m refer to the filament and matrix, re- 
spectively; and k is a filament misalignment factor. The con- 
tiguity of the fibers is quite noticeable in the photomicrographs 
that were taken and has a noticeable influence on Young's modulus 
perpendicular to the fibers and on the shear modulus. C = 0.3 ap- 
pears to be representative of the cylinders tested in this study. 
The contiguity factor, crude as it is, does provide a simple first 
approximation for the effect of contiguity of the fibers."' 

The percent resin content in the composite, not the total per- 
cent resin content, is used in the theoretical model computations. 
The total resin contents were determined by loss of weight due to 
ignition of samples of the specimens taken after the tests were 
completed. The values of resin content in the composite material 
(Table 6) were determined by using the photomicrographs to estimate 
how much the outer resin layer contributed to the total resin con- 
tent. While the difference between the two sets of resin contents 
is small, its influence is felt in the theoretical shear modulus. 
If the total percent resin content had been used, the contiguity 
factor C = 0.4 would have yielded a good comparison with experi- 
mental data, rather than C = 0.3. This sensitivity of shear modulus 

to contiguity has been noted by Ekvall 14 and can be seen in S. Tsai's 
results. It is an example of where a simple test can provide ac- 
curate values of modulus while an accurate theoretical prediction 
is difficult to a'chieve. 

;kFor filament wound composites whose fibers are isolated by the 

resin matrix, the method of Hashin and Rosen 13 offers another ra- 
tional method of analysis. In addition to using the same expression 
for the modulus in the direction of fibers, their shear modulus is 
identically equal to that of S. Tsai with C = 0. 
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V. CONCLUDING REMARKS 

For cylinders with diameter to thickness ratios of 167 to 
643, classical linear shell buckling theory has been found to 
provide a reasonable basis of comparison with the axial compres- 
sion loads that a filament-wound cylinder can sustain. Still, 
the solutions to the following problems should be obtained: 

A large deflection analysis for anisotropic cylinders 
that includes initial geometric imperfections. When 
design criteria are used in which the avoidance of 
buckling is at least a part, the layer arrangements 
in a filament-wound cylinder should be chosen to 
reduce the effect of initial imperfections. The 
large deflection analysis that includes the effect 
of initial imperfections can then be used as a design 
tool; 

2) A large deflection analysis for anisotropic cylinders 
that includes the effect of boundary conditions on 

the prebuckling stress state. Almroth 15 has shown, 
for isotropic cylinders, that the classical buckling 
load is somewhat reduce.d when the effect of uniform 
clamping on the prebuckling state is considered; 

3) Refined methods of analysis for predicting composite 
moduli. The effect on composite moduli of fabrica- 
tion processes, a detailed study of filament contig- 
uity, and large strain response of the resin matrix 
should be obtained. 
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Cylinder 
Number 

1 

Average Average Total 
Total Thickness Thickness Average Mandrel 
Cylinder of Each of Polar or Total Thickness Diameter and 

2nd Layer Angle Length Circumferential Vertical Layer of Cylinder Maximum Deviation 
and Ends per Inch ( in . ) f Layer (in.) (in.) (in.) (in.) 

8"49' - 400 8.08 0.0120 0.0117 0.0357 -0.000 
5*g37 +0.001 

5 0" - 400 8.08 0.0116 0.0116 0.0348 

3 0" - 400 15.63 0.0115 0.0130 0.0360 12.623 -0.001 
+0.001 

4 8"34' - 400 15.63 0.0121 0.0134 0.0376 

6 0" - 408 21.73 0.0121 0.0126 0.0368 18-o35 -0.003 
+0.003 

6a 15.18 0.0127 0.0125 0.0379 

7 8O29' - 400 21.73 0.0123 0.0126 0.0372 

7a 15.12 0.0121 0.0128 0.0370 
8 0" - 416 28.25 0.0130 0.0125 0.0385 23-868 -0.005 

+0.002 

9 8"33' - 400. 28125 0.0121 0.0130 0.0372 

11 0" - 400 31.91 0.0119 0.0116 0.0354 -0.000 
5.g55 +0.003 

12 2"56' - 400 31.91 ,F 1 0.0118 0.0348 

2 0" - 400 8.08 / 0.0117 0.0112 0.0346 -0.000 
5.g37 +0.001 

I 

+cTotal length between clamping rings is 1.40 in. less. 

Table 1 Cylinder Geometry 



Table 2 Ttist Rahults 

Load-Strain Slopes and Buckling Loads 

Internal Pressure Torsion 
Nominal Gages Used for 

Cylinder Diane ter None ina 1 Winding Pre - 
psi/microinch/in. Pre - (Principal Strain used) Internal Pressure 

NO. (in.) LID Type loaded Axial ; Circ,umferential loaded in.-lb/microinch/in. Axial Slopes 

2 6 1 Vertical 0.176 0.0911 Yes 5.78 All axial 

5 6 1 Vertical Yes 0.167 j 0.1024 Yes 5.68 All axial 

1 6 1 Polar 0.154 0.0942 Yes 5.71 All axial 

11 6 5 Vertical YCS 0.162 0.0882 Yes 6.20 2 and 3 

12 6 5 Polar 0.167 0.0946 6.06 2 and 3 

3 12 1 Vertical Yes 0.0847 0.0466 27.6 2 and 3 

4 12 1 Polar Yes 0.0912 0.0470 28.6 2 and 3 

6 la 1 Vertical Yes 0.0572 0.0329 Yes 53.1 2 and 3 

6a la 314 Ye.3 0.0552 0.0327 Yes 53.2 All axial 

7 18 1 Polar 0.0550 0.0299 51.7 2 and 3 

i-a 18 314 Yes 0.0580 0.0319 Yes 52.3 All axial 

8 24 1 Vertical 0.0356 0.0236 106.7 2 and 3 

9 24 1 Polar Yes 0.0436 0.0247 Yes 89.4 2 and 3 

I 
Tension Compression-Buckling 

lb/microinch/in. 
lblmicroinchlin. 

Gages Used 
Pre- 

Axia 1 Circumferential 
Failure for Tension 

Cylinder Pre- loaded to Load Location and Compression 
NO. Loaded Axial Circumferential 2000 lb Initial Final Initial Final (lb) of Buckle Axial Slopes 

2 3.68 -28.5 Yes 3.56 3.17 -26.4 -23 .O 14,800 Minus All axial 

5 Ye5 3.45 -23.7 YES 3.37 3.41 -24.7 -24.7 16,120 Minus All axial 

1 Yes 3.30 -22.7 Yes 3.48 3.23 -23.5 -21.3 14,020 Minus All axial 

11 Ye.5 3.52 -29.3 3.61 3.39 -26.9 -26.9 16,210 Plus 2 and 3 

12 3.78 -21.2 3.56 3.57 -25.2 -26.9 15,710 Plus 2 and 3 

3 7.72 -59.3 7.70 7.14 -59.8 -55.5 13,430 Plus 2 and 3 

4 8.23 -56.7 8.56 7.21 -58.3 -58.3 14,830 PlUS 2 and 3 

6 10.90 -75.7 12.30 11.44 -76.9 -76.9 9,250 Plus 2 and 3 

6a Yes 10.86 -75.7 Yes 11.18 10.67 -95.2 -95.2 14,050 Plus All axial 

7 10.30 -79.2 10.36 10.67 -93.1 -93.1 9,170 Minus 2 and 3 

‘7a YES 10.75 -70.0 Yes 10.35 11.21 -71.9 -71.9 17,350 Plus All axial 

8 14.26 -110.0 Yes 13.78 13.36 -115.4 -115.4 i 8,980 I Plus 2 and 3 
10,780 

9 14.56 -113.6 15.01 14.75 -116.6 -116.6 14,980 Plus 2, 3, 11, 12 



8.86 

8.64 

Initial Tension 
Initial compres 
5 ion 

Final compres- 
sion 

9.34 

8.52 

Initial Tenslo” 

8.13 

8.40 

3.3‘ 

2.96 

2.66 

,.06 

,.40 

3.20 

8.56 

9.‘2 

9.26 

9.,7 



Table 4 Cylinder Buckling Loads 

I Solution from Charac- Solution for 

Cylinder L D 
teristic Equation ’ Clamped Ends 

Number E iL (dzg) n m  Load (lb) n 

1 1.118 167 8.82 8 9 19,064 8 

5 1.119 171 0.0 8 10 18,973 8 19,046 16,120 0.85 

3 1.124 352 , 0.0 10 18 18,943 10 18,977 13,430 0.71 

4 1.124 336 ( 8.57 10 17 20,029 10 20,073 14,830 0.74 1.028 

6 1.125 491 ; 0.0 14 14 21,759 14 21,800 9,250* 0.42 

6a 0.762 477 0.0 13 11 21,151 13 21,215 14,050t 0.66 

’ 7 1.125 486 8.48 14 12 21,434 14 21,490 9, 170” 0.43 1.008 

7a 0.759 488 8.48 13 10 21,257 13 21,329 17,350t 0.81 1.016 

8 1.123 621 0.0 15 20 22,323 15 22,344 

9 1.123 643 8.55 15 17 20,507 15 20,528 14,980 0.73 1.021 

11 5.095 169 0.0 8 39 19,944 8 19,948 16,210 0.81 

12 5.095 172 2.93 8 41 19,777 8 19,780 15,710 0.79 1.006 

2 1.119 , 173 0.0 8 10 18,479 8 18,542 14,800 0.80 
I 

*Load corresponding to local end buckling. 
tLoad on shortened cylinder with improved clamping procedure. 
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Table 5 Effect of Method Used for Determining Moduli 
on Theoretical Buckling Loads 

Cylinder Number 

6a 

7 

7a 

8 

9 

11 

12 

2 

Buckling Load Using 
Initial Tension Moduli 

Buckling Load Using 
Final Compression Moduli > 

1.007 

1.016 

1.095 

1.143 

0.970 

1.034 

0.938 

0.974 

1.051 

0.992 

1.015 

1.060 

1.070 
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Table 6 Comparison of Tension Moduli With an Analytical Model 

Total Resin Resin Content E22C EllC 
Young's Modulus Young's Modulus y12 c66c 

content in Composite Major Shear 

Method Cylinder (Percent by (Percent in Direction of Perpendicular to Poisson,s Modulus, 
Used No. Weight) by Weight) Fibers, lo6 psi Fibers, LO6 psi Ratio LO6 psi 

Experiment 1 20.4 18.2 8.85 3.09 0.32 1.39 

Tsai C=O.4 8.68 3.05 0.24 1.62 
c = 0.3 2.75 0.25 1.43 
c = 0.2 2.45 0.25 1.23 
c = 0.0 1.86 0.26 0.84 

Experiment 2 20.4 17.0 8.61 4.24 0.22 1.49 

Tsai c = 0.4 8.90 3.21 0.24 1.69 
c = 0.3 2.90 0.25 1.49 
c = 0.2 2.59 0.25 1.29 
c = 0.0 1.97 0.25 0.89 

Experiment 3 18.7 16.2 9.79 3.16 0.32 1.52 

Tsai C = 0.4 9.04 3.32 0.24 1.74 
c = 0.3 3.00 0.24 1.54 
c = 0.2 2.68 0.25 1.34 
c = 0.0 2.04 0.25 0.93 

Experiment 4 19.3 18.7 9.10 3.59 0.28 1.47 

Tsai C = 0.4 8.60 2.99 0.25 1.60 
c = 0.3 2.70 0.25 1.40 
c = 0.2 2.41 0.25 1.21 
c = 0.0 1.82 0.26 0.82 

Experiment 5 19.3 17.4 10.13 2.77 0.41 1.46 

Tsai c = 0.4 a.83 3.16 0.24 1.67 
c = 0.3 2.85 0.25 1.47 
c = 0.2 2.54 0.25 1.27 
c = 0.0 1.!?3 0.25 0.88 

Experiment 6 21.3 19.0 9.34 3.02 0.34 1.41 
6a 8.80 3.14 0.32 1.37 
7 a.33 3.22 0.26 1.32 
7a 8.88 3.20 0.32 1.34 

Tsai C=O.4 a.55 2.95 0.25 1.58 
c = 0.3 2.66 0.25 1.39 
c = 0.2 2.37 0.25 1.20 
c = 0.0 1.80 0.26 0.81 

Experiment a 21.3 t a.13 3.34 0.26 1.54 

9 20.4 t 9.42 3.06 0.29 1.29 

Experiment 11 19.4 16.6 8.38 3.76 0.22 1.56 

rsai C = 0.4 8.96 3.25 0.24 1.71 
c = 0.3 2.94 0.25 1.51 
c = 0.2 2.63 0.25 1.31 
c = 0.0 2.00 0.25 0.91 

Experiment 12 19.4 16.4 8.50 4.33 0.29 1.54 

rsai c = 0.4 a.99 3.28 0.24 1.73 
c = 0.3 2.97 0.25 1.52 
c = 0.2 2.65 0.25 1.32 
c = 0.0 2.02 0.25 0.92 

tThe photomicrographs for Cylinders 8 and 9 were adequate to provide composite layer thickness data but were 
lot adequate to distinguish the surface resin layer thickness. 
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View 4 

View 1 
0 deg 

I 
View 3 

I 
View 1 

View 2 

Cylinder L (in.) A (de?,) B (in.) C (in.) 

1 -'< 6.68 12 2.25 -_ 

2 6.68 15 -- -- 

3 14.23 6 3.56 -- 

4 14.23 6 3.56 -- 

5 5: 6.68 12 2.25 -- 

I 11 1 30.51 1 12 1 7.63 1 -- I 

I 12 1 30.51 1 12 1 7.63 I -- I 

11 Wages 2 and 3 interchanged. I 

/ // /////‘/////I / /Y//////i//////// 

View 2 View 3 
90 deg 180 deg 

Fig. 1 Strain Gage Locations 

F 6 a__ h77z 

View 4 
270 deg 



ifi 

. . . 

Tensile Strain (micro-in./in.) 

Fig. 2 Cylinder 9, Internal Pressure vs Strain 

1 6 11 7 IT-1 

100 

Strain (micro-in./in.) 

Fig. 3 Cylinder 9, Tension Load vs Strain 
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Prinrinll Strain (micro-in./in.) 

Fig. 4 Cylinder 9, Torque vs Strain Strain (micro-in./in.) 

Fig. 5 Cylinder 9, Compression Load vs Strain 
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Fig. 6 Cylinder 12 , . (6-in. dia) in Postbuckled State 
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Fig. 7 Cylinder 12, View of Inside after Test 





: 
‘1 /” / 

Fig. 9 Cylinder 4 (12-in.dia) in Postbuckled State 



Fig. 10 Cylinder 6 (la-in.dia) in postbuckled State 



: ., i 

Fig. 11 Cylinder 8 (24-in. dia) after Test 



1 .‘. 

. . 
“, 

. . 

Fig. 12 Cylinder 9 (24-in. dia) in postbuckled State 



Fig. 13 Cylinder 9, Photomicrograph of Cylinder Wall 
(Taken at an angle of 19"30' with respect 
to the axis of the cylinder, 80x) 

34 
Fig. 14 Cylinder 9, 

(700X) 
Detail of Crack Shown in Fig. 13 
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i- 

-;: 

____ _._. -. --. 

Fig. 15 Cylinder 7a (Shortened 18-in. dia Cylinder) in Postbuckled State 
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APPENDIX A 

FABRICATION OF CYLINDERS 

A single lot of pre-impregnated fiberglas roving was obtained 
from U.S. Polymeric Chemical Co. for the fabrication of all the 
cylinders. This material was 20 end, S994 roving with an HTS finish, 
and was impregnated with an epoxy resin system designated EF 787 
by U.S. Polymeric Chemical Co. 

All cylinders were wrapped with a roving tension of 10 lb, and 
consisted of three layers of material. The first and third layers 
were wrapped circumferentially and contained 400 ends per inch roving. 
The middle layer parameters were systematically varied and are listed 
in Table 1. The nominal wall thickness of all cylindrical specimens 
was 0.036 in. All cylinders were cured in the same oven, using a 
cam that resulted in the following cure cycle: 6 hr from 200 to 
350°F plus 16 hr at 350°F. Following cure, the specimens were cut 
to the length shown in Table 1. The layer thicknesses in Table 1 
are averages of values taken from four photomicrographs of cross- 
sections cut from the cylinder after testing. The values are 
exc.lusive of a thin resin layer that exists on the outer surface 
of each of the cylinders due to compaction of the rovings. 
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APPENDIX B 

SOLUTION OF EQUATIONS OF EQUILIBRIUM 

Appendix B describes the analysis used to obtain the buckling 
strengths of clamped filament-wound cylinders under axial compres- 
sion. 

Stress Equations of Equilibrium - A cylindrical shell of con- 
stant thickness h and mean radius R is referred to a modified 
cylindrical system of coordinates x, 8, and z as indicated in Fig. 
B-l; x is measured along the axis of the shell, @ along the circum- 
ference, and z in the direction perpendicular to the middle surface. 

The linear stress equations of equilibrium LO in terms of the 
notation of this report are: 

i3N 
xX+1- aNex 

dX R a@ LB-11 

1 6N 
8e + 

1 bM xe -- - 
R a@ 

-Y----+-- . i2v 
R 3x + N1 

xx 2+ dX 

N;e a +,-,,(w+$+7)+24&(w+~)=o; 

-2 -2 

+ $ 2 + + &f$ Nee -- R + N;, $ + 

LB-21 

[B-31 

Fig. B-l Cylindrical Coordinate System for Composite Shell 
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where . \ 
I 
h/2 

Nxg = u 0 
xx 

-h/2 

h/2 
N 98 = J 5% dz, M = 88 ‘88 

zdz, 

-h/2 
t LB-41 

N = xe J h/2 h/2 u xe J u X6 
-h/2 -h/2 

h/2 h/2 
N 6x = J oxadz > M = 

ex J u X0 zdz. 

-h/2 -h/2 1 

The superscript i refers to the initial stress state; stress re- 
sultants and moments without superscripts represent the additional 
stresses that occur with buckling; u, v, and w are the displacements 
in the axial, circumferential, and radial directions, respectively, 
which arise due to buckling. The cylinders to be considered are 
thin (h/2R << 1). This has been used extensively to reduce the 

number of initial stress terms possible. 
16 

The initial stress re- 
sultants used for axial loading are: 

LOAD N1 = - 7, N1 
xx ee 

= 0, Nie = 0. 

Constitutive Equations - The anisotropic stress-strain relation- 
ship for a cylinder in a state of plane stress is CJ xx 

1.1 ‘ee = 

u X6 

‘C 11 cl2 '16 

cl2 c22 '26 

'16 '26 c66 

r e xx 

0 

11 

eae 

e X6 

Lb-51 
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with the Fliigge strain expressions given by 

1 
e xx 

eee 

e 
XEI 

0 3U 
E =- 

xx AX’ 

= 

0 
E 

xx + ZKXX 

0 

Eee 

+ ‘(l - kJKxe 

2 
i3W 

K E-P 
xx 

dX 
2 

0 =;+;?I& 1 
Eee Kee = - 2 

( ) 

w+?$ 
be 

0 =L?!A+$!L K 1 &I 1 E bv 
X6 R 0e OX' --T-+-~--.y-- 

2R 0e 2 ox * 

The cons itutive equations for the cylinder are obtained by 
and [B-6] into [B-4]. The expressions are substituting Eq [B-5 

given by Cheng and Hog and are repeated here. 

N 
xx 

Nee 

N 
Xt3 

N 8X 

M xx 

Mee 

M X9 

M t3X 

= 

I~-61 

*ll +BL1* )( B12 
K 12 + R *16 + ??- 

)( 
B16+~)(B11+~)B12(B16+~ 

*22 (A26 + 3) B12(B22 - ?)('26 - i? 

B16 
*16 + 7 >( *26 + 

B26 
7 

'( 
*66 + R B66+$$(~lb++)~26(~66+% 

*26 b66 + 3) B16(B26 - ?9(B66 - 2) 

Dll 
Bll + F I( 

D12 
B12 + ? '( 

D16 
B16 + R ' Dll D12 D16 

B16 
D16 

+ R )( 
D26 

B26 + R '( 
D66 

B66 + R > 
D16 D26 D66 

'16 B2G B66 D16 D26 D66 

D-71 
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with [A], [Bl, and D] defined by 

5 
h/2 

[Al = [Cl dz 
-h/2 

LB1 = 
5 

h/2 

[ 
-h/2 

C] zdz 

J h/2 [Dl = [I 
-h/2 

C] z2dz. 

For the cylinders considered in this study, the stiffness matrices 
reduce to the forms 

See Eq [C-3], [C-4], and [C-5] in Appendix 

r Dll D12 0 1 
,  

1 

_I. 

[D] = 

: 

D 

0 

12 D22 O - 

0 D66 1 

Characteristic Equation - The displacement equations of equilib- 
rium are obtained by substituting Eq [B-81 and [B-7] into Eq [B-l] 
thru [B-3]. 1he subs itution of disp .acements of the form 

u = A sin(E + n6) 

v = B sin(F + ne) 

w = c COS(? + no) 

into the equations of equilibrium yields the characteristic deter- 
minant 

40 
I al3 a23 a33 

= 0 

[B-g] 

[B-lo] 
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with 

all = 
[( 

B66 - - R+ 

2 B12 
al2 = + Al2 + -g- + A66 + R 

[!$-+F)A3+ (Al2 -Nb,)hi(A26 -!$+y)n+ 

al3 = 

[i 

B22 i 
A22 + R + NM 

B26 + 2 R+ - 

a22 = 

+ 

B66 

A66 + 3 R + 3 

[(A22+N~,e)n+(~+>+>+~);,2n+~n3+ 

a23 = 
B26 i A26 + R + 2Nxe 

a33 = + p (n2 - lj2 + (2 % + Nix) A2 + (2 % + Nie) n2 + 

B 
i\n + A22 22 

-- 
R 1 

and n = 0, 1, 2, 3, . . . . 
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If h = mJr R/L, m = 1, 2, 3 . . . ., the solutions correspond to 
boundary conditions that are determined by the trigonometric form 
of the assumed solutions. The solutions to be found by this proce- 
dure are obtained by expanding the characteristic determinant into 
the form 

Po(N:,)' + Pl(N;x)2 + P2Nix + P3 = 0. 

Equation [B-11] is solved by the Newton-Raphson procedure. 17 

[B-11] 

The first approximation for Nz, is given by 

N:, = - P3 
I 

P2. 

The iteration is completed when 

(N:x)j+l -  tN:x) j  4 
<lx10 . 

j+l 

The calculations are performed by an IBM 1620 computer. For a given 
value of n the axial buckling load is printed for m = 1 through a 
maximum specified value of m. The minimum buckling load for the 
given value of n is also printed. The procedure is then repeated, 
with n increased by unity, until the maximum specified value for n 
is achieved. Generally, a maximum of two iterations is required 

for each N1 xx' 
The case n = 0 sometimes requires five iterations. 

Effect of Boundary Conditions - The solution for arbitrary bound- 
ary conditions uses displacements of the form: 

u = $ 4( sin(y + n6) 

k=l 

v = f: Bk sin(y f nC) 

k=l 

w= i ck cos(y + nf?) [B-12] 

k=l 
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where A k represents the roots of the eighth order polynomial equa- 

tion obtained by expanding the characteristic determinant Eq [B-10] 
in powers of A. Since each root satisfies the characteristic equa- 
tion, the displacements corresponding to each root can be super- 
imposed. 

Because the coefficients of the polynomial equation are real, 
a complex root must be accompanied by a root that is its complex 
conjugate. Consider the two roots 

?\ k = Ark + ihik 

Ak+l = Ark - ihik. 

Since the displacements are real, we have 

ck = Crk + iCik 

Ck+l = Crk - iCik. 

The expansion of the k and k + 1 components of w in Eq [B-12] in 
terms of its real and imaginary parts yields the real sum 

b) k + wk+l = ( 2Crkr-2,~ ' 2cikilk) 'OS ne 

+ (-2Crki;3k + 2Cikc4k) sin n6 

where 

5 lk 
= sin (hrk E)sinh (Aik E) 

52k 
= cos (iIrk ;)cosh (Aik ;) 

(3, = sin (;,rk t)cosh (A..k k) 

;4k = cos (;\rk F)sinh (hik E) 
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The u and v displacements are treated in a similar manner. The 
modal amplitudes % and Bk are found in terms of Ck from the equa- 

tions of equilibrium. Let 

?C=( fA + if A 
rk ik > 'k 

then 

A A 
Uk f uk+l = 2CrkUcr - 2CikUci cos n@ 

> 

+ 2CrkUtr ( 
- 2Cik$ 

> 
sin ne 

where 

U cr = f:ki3k - f?kS4k 

UA ci = f;&, + f:kS4k 

UA sr = f:k52k + f?kilk 

The sum vk + v~+~ is obtained by replacing superscript A by 

superscript B. Slopes and stress resultants are obtained by suitable 
differentiations of the displacements. When two real roots occur, 
instead of a pair of complex conjugate roots, they are represented 
in the summations for the total deflections by the coefficients of 

2Crk with 2Cik = 0. 
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All of the ingredients required for satisfying boundary condi- 
tions are now available. The clamped conditions, corresponding to 

dw the experiments, are u = v = w = z = 0 at x = *L/2. Setting the 

coefficients of cos n@ and sin nB equal to zero, one arrives at eight 
simultaneous homogeneous algebraic equations. For given geometric 

and stiffness properties of the cylinder, the lowest value of N1 xx 
that sets the determinant of the coefficients of 2Crk and 2Cik equal 

to zero is the load per unit of circumferential length that is re- 
quired to buckle the cylinder. 
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APPENDIX C 

DETERMINATION OF STIFFNESSES AND MODULI 

Appendix C describes the analysis used to obtain the stiffnesses 
and moduli of filament-wound cylinders from suitable test data. The 
tests required are internal pressure, axial tension or axial com- 
pression, and torsion. 

Transformation Equations for Composite Moduli - The composite 
modulus matrix for a filament-wound structure- in a state of plane 
stress has an orthotropic form when referred to axes along, and 
perpendicular to, the fiber direction. Let x', y', z' denote such 
a system of axes, with the fibers directed along x'. The ortho- 
tropic modulus matrix C' can be written as 

[C’ I= 

"ii 'i2 O 

'i2 52 O 

0 0 56 

An in-plane rotation to a new coordinate system (x,y,z) is ac- 
complished by 

where cp is the angle of rotation shown in Fig. C-l. 

Y 

Fig. C-l Transformation Axes for Composite Moduli 
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Since [C'] transforms according to the standard rules for a 
fourth rank tensor, its representation in the new coordinate system 
is given by;\ 

Cl2 

c22 

'26 

'16 

'26 

c66 1 

where 

cl1 
4 4 

= C Ci1 + 2(Ci2 + 2Ck6) s2c2 + s ci2 

cl2 
= ,2s2 Cl1 + ci2 - 4Cb6 ) ( + 4 4 c + s 

> 'i2 

'16 
2 2 = cs C Gil - S C;2 c2 - s2 

N 'i2 + 2Ci6 
)1 

c22 4 2 2 4 
= S Gil + 2C S (CL2 + 2c~6) + ' '~2 

'26 
2 2 2 2 

= cs S Gil - C C;2 C - S + 2Ci6 )I 
c66 

2 2 2 
= c s Gil + C~2 - 2Ci2 C - S 56 

and 

c = cos cp 

s = sin Cp. 

Constitutive Equations - The stress-strain relationship for a 
polar half-layer referred to the longitudinal and circumferential 
directions is 

[C-7-1 

"The compact representation of the fourth rank tensor components 
Cl. 1JkL by matrix notation Clmn is only a convenience. To transform 

the components of the moduli to other axes it is necessary to use 
the complete tensor notation. 
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where, 

j refers to the j th polar half-layer, 

sigj(z) = +l for polar angle = %p. 

The wall of each cylinder fabricated for this study is composed 
of three layers. The inner and outer layers are circumferential 
windings of equal thickness h ; C the middle layer is a polar winding 

with two half-layers wound at angle of wrap %JJ and total thickness 
h. The in-plane, coupling, and bending stiffness matrices [A], 

and [D] are obtained by applying the [C] matrix in Eq [C-2] to 
Eq [B-91. The result is 

cp 11 cp 0 12 

[Al = [C] dz = 2h c Cc + h [ 1 Cp Cp 0 
P 12 22 

LB1 = [C] zdz 

[Dl = 2 
[C] z dz 

= 
h2 

:- 
qp 

0 0 -Cp + 16 1 

he + 2hc)3 - hi) + 

+ h; 

Ilc-31 

[C-41 

[C-51 
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r 

with 

[I cc = [C-61 

The superscripts c and p indicate the modulus matrices for the cir- 
cumferential layer and the polar layer, respectively. 

The elements of Cp III are computed from Eq [C-l] with 

C 

'ii = '22 = composite modulus in the fiber 
direction 

Ci2 = CE2 = composite modulus representing 
Poisson's ratio effect 

ci2 = cyl = composite modulus perpendicular 
to the fibers 

Ck6 = CZ6 = composite shear modulus 

[C-71 

PC Hence, there are only four independent moduli 
to be determined. 

It is assumed that the quality of the construction of the cyl- 
inder is such that each layer has the same uniform properties when 
referred to the direction of winding. This can be qualitatively con- 
firmed for an individual cylinder by using a light source to illu- 
minate the wall of the cylinder. The transparency of a thin fila- 
ment-wound cylinder permits a visual inspection of the uniformity 
of construction. The lack of a complete bond between resin and 
fibers is simply detected by black streaks where wetting has oc- 
curred. 
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The choice of the sign in [B] depends on which side of the polar 
wrap is considered. While the sign convention chosen for cp is arbi- 
trary (hence the sign convention of B16, B26 is arbitrary), the ex- 

istence of the two different signs is not arbitrary. The sign in 
[B] alternates at each of two diametrically opposite weave lines in 
the polar wrap. The two weave lines are parallel to each other in 
a plane that intersects the center of the cylinder and is skew with 
respect to the longitudinal axis by the angle cp. 

In order to understand why the weave occurs, one must understand 
how a polar wrap is wound around a mandrel. The plane in which the 
fibers are wound is kept constant while the mandrel is continuously 
rotated until a complete rotation of 360 deg is achieved. Figures 
C-2 thru C-7 illustrate three phases of the winding sequence." 
Figures C-2 and C-3 are front and rear views, respectively, of the 
first polar encirclement of roving around the mandrel. Notice that 
when the roving is referenced with respect to the local surface of 
the mandrel two diametrically opposite fibers in the roving are 
oriented at angles that are equal to each other in magnitude but are 
opposite in sign. Figures C-4 and C-5 represent front and rear+ 
views of the rovings on the mandrel after the mandrel has rotated 
180 deg. One can see the beginning of the overlapping of rovings. 
Also, by considering only those parts of the rovings that are in 
contact with the surface of the mandrel, one can see that the half- 
layer on the left side of Fig. C-4 has an orientation that is op- 
posite to the orientation of the half-layer on the right side of 
Fig. C-4. The same is true for the rear view shown in Fig. C-5. 
Figures C-6 and C-7 are front and rear views of roving on the man- 
drel just before the mandrel has completed its 360 deg rotation 
(hence, just before the two outside half-layers and the two weave 
lines are completed). A detailed view of a weave "line" in 
Cylinder 1 is given by the photomicrograph in Fig. C-8. The 
rovings in the outer polar half layer are seen to gradually turn 
into what is called the inner polar half layer. Also, the 
transition length required for this is seen to be of the order 
of magnitude of the thickness of the shell. 

"'A black-coated mandrel and gaps between rovings are used in 
Fig. C-2 thru C-7 for illustration purposes. The cylinders fabri- 
cated for the buckling study were wound around cylindrical aluminum 
mandrels and the rovings were laid adjacent to each other. 

*The front views in Fig. C-2, C-4, and C-6 are taken from the 
same position. Similarly, the rear views in Fig. C-3, C-5, and 
C-7 are taken from the same rear position, directly opposite the 
front view. 
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Determination of Stiffness and Moduli - The simplified forms 
of the stiffness matrices given by Eq [C-3], [C-4], and [C-5] reduce 
the constitutive relations Eq [B-81 to 

B 
N xx 

= Allezx + A 16 o D1l co + R exB + R K 12 ee +B K xx 16 x0 
I 

Nee 
D22 = A12iEx + A22e;6 - R Kee 4-B K 

26 x@ [C-81 

B B 
N 26 o 

X@ 
ZAkEO + 

R xx - %e R 
0 + 
X63 

-l-B K D66 
16 xx +B K +~RK~@ 26 88 i 

with similar expressions for N OX and the bending moments. 

For the moment, assume [B] is homogeneous. Since N xx = constant, 

N 68 = constant, and N xe = constant in the three tests considered, 

there can be no changes in displacements with respect to &. If all 
strain data are obtained at the midsection of the cylinder the 
curvature due to restraint of the cylinder ends can be negl.ected 
and thus: 

\ 2 0 c =%K 3 w 
xx c)x' xx= 

- -= 0 
\2 LX 

0 
0 W W 

Kee = - z = 
'eb 'be = R' _- 

R 
0 

0 & 1 ih Exe E =-,K xe ax xe =Ra,=R. 
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Eq [C-8] reduces to 

N =A e" 0 2B16 o 
xx 11 xx + A12Eee + R exe 

N o B26 o 
ee Eee + R 'xe 

N X0 

Now consider longitudinal tension and internal pressure applied 
to the shell. With no restraint provided to rotation at the ends, 
N =O. X0 Therefore, 

_ BL6c” 
0 R xx E = 
xe D66 

( -) 
A66 + R2 

and 

N ee 

The expressions in brackets differ from unity by terms of order 

O-&U2. Because of the thinness of the shells, the difference can 
be effectively neglected. The constitutive equations used for 
determining All, A12, and A22 for orthotropic cylinders (cp = 0) 

are therefore equally valid for the anisotropic cylinders (cp # 0). 
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The in-plane stiffnesses (All, A12, and A22)are determined by 

first applying uniform tensile loads to the ends of the cylinder 

N xx = Load/JrD, Nee = 0 and measuring the principal strains e" 
( 1 xx T 

and E 0 
( ) 88 T* 

After the tension test is completed, internal pressure 

p is applied 
( 

pR Nee = pR, Nxx = 2 
1 

and the principal strains E 0 
xx 

and 0 
( > 

( ) P 
Eee are measured. The tests provide four equations for 

P 
determining the three stiffnesses. Three of the equations can be 
combined to yield 

PR 
A22= 0 

( ) ‘86 
P 

+ 

(ioBe)T (EE~)p 

1 - (cx)T ((GJp 
1 

3 

! 
0 ( ) '88 T 

A22 Eo 
( > xx T 

0 ( ) 'e6 T 
Al2 = - A22 <'O * 

( ) -xx T 

The fourth equation from the tests provides a check on A12: 

A12 = 2 
PR 

* 

[C-101 

[C-l11 
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The same procedure is applied to the torsion test. With no 
axial loads or internal pressure, Eq [C-9] yields 

0 
E = - 

xx 

and then 

B26 
- Al2 R 1 0 E xe 

N xe 

B26 B16 _- 
R R Al2 

i 0 
xe’ 

Again, for (h/R)2 << 1, the bracket term is effectively unity and 
the constitutive equation used for determining A66 for the ortho- 

tropic cylinders is equally valid for the anisotropic cylinders, 
that is, 

N 0 
xe = A66cxe = 2A66E450 

with D66 /R2 << A66. Therefore, 

A66 
= Torque/((4fiR2e450) 

The engineering shear strain 0 
( ) 
c X0 is twice the tensile strain E45" 

measured at 45" with respect to the longitudinal direction. The 
proof is based on the usual Mohr's circle or second rank tensor 
transformation argument. 

[C-12] 

Once the [A] matrix is known, the composite moduli are obtained 
from the system of four independent algebraic equations represented 
by Eq [C-31, with Eq [C-7] used. The four equations can be symme- 
trized and the result is 
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[Ml : 

C 
c11 

C 
cl2 

with the elements of the symmetric matrix [M] given by 

M11 = 2hc + hps4 

Ml2 = hpc4 

Ml3 = 4h s2c2 
P 

Ml4 = Ml3 I 
2 

M22 = Ml1 

M23 = M13 

M24 = Ml4 

+ hp(c2 - s2j2 

M34 = -2M13 

M44 = 2hc + hp(c4 + s4 . 

After Eq [C-13] is solved for the composite moduli by Crout reduc- 
tion, the coupling and the bending stiffness matrices are obtained 

[C-13] 

from Eq [C-41.and [C-5]. 
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Two comments must now be made. First, since the magnitude of 
[B] does not affect the determination of stiffness and moduli, it 
seems reasonable to assume that the nonhomogeneity of [B] will not 
affect the analysis. Second, it is not theoretically necessary to 
obtain explicit expressions for the in-plane stiffness matrix before 

the composite moduli are computed. The moduli C;,, Cyl, Cf2, and CL6 

may be obtained directly from Eq [C-9] with the appropriate loading 
conditions specified and with Eq [C-l], [C-3], [C-4], and [C-7] 
used. 

Finally, in order to provide a comparison with theoretical meth- 
ods of computing moduli, computations have been made for 

Major Poisson's ratio = v12 = Cf2 
I 

CFl 

Minor Poisson's ratio = v21 = Cf2 
I 

Cf2 

Young's modulus 
in direction of fibers = E 

C 
22 = CZ2(1 - V12 * v21) 

Young's modulus 
perpendicular to fibers = EFl = Cyl(l - v12 . \/21) 

with 

Shear modulus = Ci6. i 
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Fig. C-2 Front View of First Fig. C-3 Rear View of First 
Polar Encirclement of Polar Encirclement of 
Roving Around Mandrel Roving Around Mandrel 

Fig. C-4 Front View after Mandrel Fig. C-5 Rear View after Mandrel 
Has Rotated 180 deg Has Rotated 180 deg 
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Fig. C-6 Front View Just Before Fig. C-7 Rear View Just Before 
Mandrel has Completed Mandrel has Completed 
a 360-deg Rotation a 360-deg Rotation 
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Fig. C-8 Photomicrograph of Weave "Line" in Cylinder 
1 (60X). Surface is 30 deg with Respect to 
the Axis of the Cylinder. Gage 10 is also 
shown. 

NASA-Langley, 1965 CR-266 


